resnet-50介绍(一)

8 篇文章 3 订阅
订阅专栏

这篇文章讲解的是使用Tensorflow实现残差网络resnet-50. 侧重点不在于理论部分,而是在于代码实现部分。在github上面已经有其他的开源实现,如果希望直接使用代码运行自己的数据,不建议使用本人的代码。但是如果希望学习resnet的代码实现思路,那么阅读本文将是一个不错的选择,因为本文的代码的思路是很清晰的。如果你刚刚阅读完resnet的那篇论文,非常建议你进一步学习如何使用代码实现resnet。本文包含源码的数据集。

resnet只是在CNN上面增加了shortcut,所以,resnet和CNN是很相似的。

##1. model
下面将要实现的是resnet-50。下面是网络模型的整体模型图。其中的CONV表示卷积层,Batch Norm表示Batch 归一化层,ID BLOCK表示Identity块,由多个层构成,具体见第二个图。Conv BLOCK表示卷积块,由多个层构成。为了使得model个结构更加清晰,才提取出了conv block 和id block两个‘块’,分别把它们封装成函数。

如果不了解batch norm,可以暂时滤过这部分的内容,可以把它看作是一个特殊的层,它不会改变数据的维度。这将不影响对resnet实现的理解。

具体见第三个图。
这里写图片描述
上图表示Resnet-50的整体结构图

这里写图片描述
上图表示ID block

这里写图片描述
上图表示conv block

##2. 数据
这里写图片描述

输入的是类似上图所示的手势图片数据,总共有6个类。所给的数据已经加工过,是‘.h5’格式的数据。有1080张图片,120张测试数据。每一张图片是一个64x64的RGB图片。具体的数据格式为:

number of training examples = 1080
number of test examples = 120
X_train shape: (1080, 64, 64, 3)
Y_train shape: (1080, 6)
X_test shape: (120, 64, 64, 3)
Y_test shape: (120, 6)
x train max,  0.956; x train min,  0.015
x test max,  0.94; x test min,  0.011

3. 目标

训练一个模型,使之能够判别图片中的手指所代表的数字。实质上这个是属于多分类问题。所以,模型的输入是一个64x64x3的图片;模型的输出层为6个节点,每一个节点表示一种分类。

4. 模型实现

identity block的实现,对于上图2。需要注意的是,X_shortcut一开始就保存了所传入的数据,然后在函数的末尾部分再加上X_shortcut。除了这一点,其他点跟CNN是一样的。

    def identity_block(self, X_input, kernel_size, in_filter, out_filters, stage, block, training):
        """
        Implementation of the identity block as defined in Figure 3

        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        training -- train or test

        Returns:
        X -- output of the identity block, tensor of shape (n_H, n_W, n_C)
        """

        # defining name basis
        block_name = 'res' + str(stage) + block
        f1, f2, f3 = out_filters
        with tf.variable_scope(block_name):
            X_shortcut = X_input

            #first
            W_conv1 = self.weight_variable([1, 1, in_filter, f1])
            X = tf.nn.conv2d(X_input, W_conv1, strides=[1, 1, 1, 1], padding='SAME')
            X = tf.layers.batch_normalization(X, axis=3, training=training)
            X = tf.nn.relu(X)

            #second
            W_conv2 = self.weight_variable([kernel_size, kernel_size, f1, f2])
            X = tf.nn.conv2d(X, W_conv2, strides=[1, 1, 1, 1], padding='SAME')
            X = tf.layers.batch_normalization(X, axis=3, training=training)
            X = tf.nn.relu(X)

            #third

            W_conv3 = self.weight_variable([1, 1, f2, f3])
            X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1, 1], padding='VALID')
            X = tf.layers.batch_normalization(X, axis=3, training=training)

            #final step
            add = tf.add(X, X_shortcut)
            add_result = tf.nn.relu(add)

        return add_result

下面是conv block,对应于上面图片3.

    def convolutional_block(self, X_input, kernel_size, in_filter,
                            out_filters, stage, block, training, stride=2):
        """
        Implementation of the convolutional block as defined in Figure 4

        Arguments:
        X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev)
        kernel_size -- integer, specifying the shape of the middle CONV's window for the main path
        filters -- python list of integers, defining the number of filters in the CONV layers of the main path
        stage -- integer, used to name the layers, depending on their position in the network
        block -- string/character, used to name the layers, depending on their position in the network
        training -- train or test
        stride -- Integer, specifying the stride to be used

        Returns:
        X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C)
        """

        # defining name basis
        block_name = 'res' + str(stage) + block
        with tf.variable_scope(block_name):
            f1, f2, f3 = out_filters

            x_shortcut = X_input
            #first
            W_conv1 = self.weight_variable([1, 1, in_filter, f1])
            X = tf.nn.conv2d(X_input, W_conv1,strides=[1, stride, stride, 1],padding='VALID')
            X = tf.layers.batch_normalization(X, axis=3, training=training)
            X = tf.nn.relu(X)

            #second
            W_conv2 = self.weight_variable([kernel_size, kernel_size, f1, f2])
            X = tf.nn.conv2d(X, W_conv2, strides=[1,1,1,1], padding='SAME')
            X = tf.layers.batch_normalization(X, axis=3, training=training)
            X = tf.nn.relu(X)

            #third
            W_conv3 = self.weight_variable([1,1, f2,f3])
            X = tf.nn.conv2d(X, W_conv3, strides=[1, 1, 1,1], padding='VALID')
            X = tf.layers.batch_normalization(X, axis=3, training=training)

            #shortcut path
            W_shortcut = self.weight_variable([1, 1, in_filter, f3])
            x_shortcut = tf.nn.conv2d(x_shortcut, W_shortcut, strides=[1, stride, stride, 1], padding='VALID')

            #final
            add = tf.add(x_shortcut, X)
            add_result = tf.nn.relu(add)

        return add_result

下面是模型的整合,对应于上图1。

    def deepnn(self, x_input, classes=6):
        """
        Implementation of the popular ResNet50 the following architecture:
        CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3
        -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER

        Arguments:

        Returns:
        """
        x = tf.pad(x_input, tf.constant([[0, 0], [3, 3, ], [3, 3], [0, 0]]), "CONSTANT")
        with tf.variable_scope('reference') :
            training = tf.placeholder(tf.bool, name='training')

            #stage 1
            w_conv1 = self.weight_variable([7, 7, 3, 64])
            x = tf.nn.conv2d(x, w_conv1, strides=[1, 2, 2, 1], padding='VALID')
            x = tf.layers.batch_normalization(x, axis=3, training=training)
            x = tf.nn.relu(x)
            x = tf.nn.max_pool(x, ksize=[1, 3, 3, 1],
                           strides=[1, 2, 2, 1], padding='VALID')
            assert (x.get_shape() == (x.get_shape()[0], 15, 15, 64))

            #stage 2
            x = self.convolutional_block(x, 3, 64, [64, 64, 256], 2, 'a', training, stride=1)
            x = self.identity_block(x, 3, 256, [64, 64, 256], stage=2, block='b', training=training)
            x = self.identity_block(x, 3, 256, [64, 64, 256], stage=2, block='c', training=training)

            #stage 3
            x = self.convolutional_block(x, 3, 256, [128,128,512], 3, 'a', training)
            x = self.identity_block(x, 3, 512, [128,128,512], 3, 'b', training=training)
            x = self.identity_block(x, 3, 512, [128,128,512], 3, 'c', training=training)
            x = self.identity_block(x, 3, 512, [128,128,512], 3, 'd', training=training)

            #stage 4
            x = self.convolutional_block(x, 3, 512, [256, 256, 1024], 4, 'a', training)
            x = self.identity_block(x, 3, 1024, [256, 256, 1024], 4, 'b', training=training)
            x = self.identity_block(x, 3, 1024, [256, 256, 1024], 4, 'c', training=training)
            x = self.identity_block(x, 3, 1024, [256, 256, 1024], 4, 'd', training=training)
            x = self.identity_block (x, 3, 1024, [256, 256, 1024], 4, 'e', training=training)
            x = self.identity_block(x, 3, 1024, [256, 256, 1024], 4, 'f', training=training)

            #stage 5
            x = self.convolutional_block(x, 3, 1024, [512, 512, 2048], 5, 'a', training)
            x = self.identity_block(x, 3, 2048, [512, 512, 2048], 5, 'b', training=training)
            x = self.identity_block(x, 3, 2048, [512, 512, 2048], 5, 'c', training=training)

            x = tf.nn.avg_pool(x, [1, 2, 2, 1], strides=[1,1,1,1], padding='VALID')

            flatten = tf.layers.flatten(x)
            x = tf.layers.dense(flatten, units=50, activation=tf.nn.relu)
            # Dropout - controls the complexity of the model, prevents co-adaptation of
            # features.
            with tf.name_scope('dropout'):
                keep_prob = tf.placeholder(tf.float32)
                x = tf.nn.dropout(x, keep_prob)

            logits = tf.layers.dense(x, units=6, activation=tf.nn.softmax)

        return logits, keep_prob, training

5. 代价函数

使用交叉熵来计算损失函数和代价函数。这里没有使用L2正则化。

    def cost(self, logits, labels):
        with tf.name_scope('loss'):
            # cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=y_, logits=y_conv)
            cross_entropy = tf.losses.softmax_cross_entropy(onehot_labels=labels, logits=logits)
        cross_entropy_cost = tf.reduce_mean(cross_entropy)
        return cross_entropy_cost

在训练模型的时候,应该控制迭代的次数,以避免过度的过拟合。刚开始的时候,所打印出来的cost值会上下浮动,这个是正常的(一开始本人以为是模型有问题,后来才知道这是正常的)耐心等待便好。训练的模型将保存在硬盘中,在预测的时候可直接读取这些数据。

    def train(self, X_train, Y_train):
        features = tf.placeholder(tf.float32, [None, 64, 64, 3])
        labels = tf.placeholder(tf.int64, [None, 6])

        logits, keep_prob, train_mode = self.deepnn(features)

        cross_entropy = self.cost(logits, labels)

        with tf.name_scope('adam_optimizer'):
            update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
            with tf.control_dependencies(update_ops):
                train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

        graph_location = tempfile.mkdtemp()
        print('Saving graph to: %s' % graph_location)
        train_writer = tf.summary.FileWriter(graph_location)
        train_writer.add_graph(tf.get_default_graph())

        mini_batches = random_mini_batches(X_train, Y_train, mini_batch_size=32, seed=None)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for i in range(1000):
                X_mini_batch, Y_mini_batch = mini_batches[np.random.randint(0, len(mini_batches))]
                train_step.run(feed_dict={features: X_mini_batch, labels: Y_mini_batch, keep_prob: 0.5, train_mode: True})

                if i % 20 == 0:
                    train_cost = sess.run(cross_entropy, feed_dict={features: X_mini_batch,
                                          labels: Y_mini_batch, keep_prob: 1.0, train_mode: False})
                    print('step %d, training cost %g' % (i, train_cost))

            saver.save(sess, self.model_save_path)

模型预测。先初始化graph,然后读取硬盘中模型参数数据。

    def evaluate(self, test_features, test_labels, name='test '):
        tf.reset_default_graph()

        x = tf.placeholder(tf.float32, [None, 64, 64, 3])
        y_ = tf.placeholder(tf.int64, [None, 6])

        logits, keep_prob, train_mode = self.deepnn(x)
        accuracy = self.accuracy(logits, y_)

        saver = tf.train.Saver()
        with tf.Session() as sess:
            saver.restore(sess, self.model_save_path)
            accu = sess.run(accuracy, feed_dict={x: test_features, y_: test_labels,keep_prob: 1.0, train_mode: False})
            print('%s accuracy %g' % (name, accu))

这个本人测试的结果
这里写图片描述

本算法只是单纯地实现和演示ResNet-50神经网络模型,所以在运行地时候出现结果时好时坏地现象,也就是结果不稳定。如果加上滑动平均模型,就会稳定很多。

本文的思路来自吴恩达老师关于深度学习第四课的课程。

数据集下载:链接:https://pan.baidu.com/s/1iA004kLU1gocvA-gaiwSWw
提取码:sqj3

完整源码下载:https://github.com/liangyihuai/my_tensorflow/blob/master/com/huai/converlution/resnets/hand_classifier_with_resnet.py

ResNet50组网图
12-31
ResNet50网络的组网图分析,详细分析了各个模块的组成。主要针对Pytorch框架,其实各个框架的实现基本一致
什么是Resnet50模型?
JJxiao520的博客
02-18 6872
主流网络:Resnet50
2024-04-06 问AI: 介绍一下 ResNET 50 预训练模型
baidu_24377669的博客
04-06 981
由于其出色的性能和普适性,ResNet-50和其他ResNet变体(如ResNet-101、ResNet-152等)成为了深度学习领域的一个基础模型,被许多研究者和开发者用作起点来构建更复杂的模型。相比于传统的CNN模型,ResNet50具有更深的网络结构,通过引入残差连接(residual connection)解决了深层网络训练过程中的梯度消失问题,从而有效提升了模型的性能。在模型的最前端是一个7x7的卷积核,步长为2,用于减小输入图像的分辨率,后面紧跟着两个3x3的卷积核,用于提取特征。
ResNet-50网络理解
热门推荐
Cheungleilei的博客
12-19 10万+
本文主要针对ResNet-50对深度残差网络进行一个理解和分析 ResNet已经被广泛运用于各种特征提取应用中,当深度学习网络层数越深时,理论上表达能力会更强,但是CNN网络达到一定的深度后,再加深,分类性能不会提高,而是会导致网络收敛更缓慢,准确率也随着降低,即使把数据集增大,解决过拟合的问题,分类性能和准确度也不会提高。Kaiming大神等人发现残差网络能够解决这一问题。这里首先放上一张Res...
ResNet50 网络结构搭建(PyTorch)
New_WR的博客
12-07 4万+
ResNet50是一个经典的特征提取网络结构,虽然Pytorch已有官方实现,但为了加深对网络结构的理解,还是自己动手敲敲代码搭建一下。需要特别说明的是,笔者是以熟悉网络各层输出维度变化为目的的,只对建立后的网络赋予伪输入并测试各层输出,并没有用图像数据集训练过该网络(后续会用图像数据集测试并更新博客)。 1 预备理论 在动手搭建ResNet50以前,首先需要明确ResNet系列网络的基本结构,其次复习与卷积相关的几个知识点,以便更好地理解网络中间输出维度的
深度学习(五):pytorch迁移学习之resnet50
m0_68926749的博客
12-04 6176
迁移学习是一种机器学习方法,它通过将已经在一个任务上学习到的知识应用到另一个相关任务上,来改善模型的性能。迁移学习可以解决数据不足或标注困难的问题,同时可以加快模型的训练速度。迁移学习的核心思想是将源领域的知识迁移到目标领域中。源领域是已经有大量标注数据的领域,而目标领域是需要解决的新问题。通过迁移学习,源领域的知识可以帮助目标领域的学习过程,提高模型的泛化能力和性能。迁移学习可以通过多种方式实现,包括特征提取、模型微调和领域自适应等方法。
庖丁解牛-Resnet50 深度剖析,细致讲解,深入理解
计算机视觉
11-05 7万+
庖丁解牛-ResNet-50深度剖析 请看50-layer这一列 是本文介绍的层的结构: resnet-50 有四组大block, 每组分别是3, 4, 6, 3个小block, 每个小block里面有三个卷积, 另外这个网络的最开始有一个单独的卷积层, 因此是:(3+4+6+3)*3+1=49 最后又一个全连接层,因而一共50层 如下图,每个大block里面的 第一个都是IN !==OUT情况,左侧支线,.........
Classification-of-Anomalies-in-Gastrointestinal-Tract-through-Endoscopic-Imagery-with-Deep-Learning:我们使用经过预训练的CNN进行迁移学习以提取重要特征,因为这是相对较小的数据集(仅8000张图像)。我们在这种方法中使用的预训练模型是ResNet-50和VGG-19。提出的异常分类方法基于以下步骤。首先,由于IV-B中所述的某些原因,我们对数据集进行了预处理。然后,我们使用经过预训练的CNN,并向两者都添加
03-18
介绍 胃肠道是人体最重要的器官之一。与人体其他器官一样,胃肠道也可以感染多种疾病。在许多组织的报告中声称,在那些疾病中,胃肠道癌症是最具威胁性的。大肠癌是一种胃肠道癌,已被确定为所报告癌症的10%的负...
基于Pytorch+CNN-Resnet50网络实现对人脸的性别和年龄识别预测源码+模型+数据集+使用说明.zip
06-28
模型结构由少量的卷积层替换为成熟的ResNet作为主干,并将年龄预测和性别预测统一到一个模型中,采用双分支输出结构。 目前在验证集的性别预测准确率为 95% 【用法】 将data.zip解压到data目录下(data.zip更新为RGB...
MEAL-V2:餐V2
03-17
在本文中,我们介绍了一种简单而有效的方法,该方法无需任何技巧即可将ImageNet上的原始ResNet-50精度提高到80%+ Top-1。 通常,我们的方法基于最近提出的 ,即通过鉴别器进行整体知识蒸馏。 我们通过1)仅在最终...
Python基于改进ResNet50的结核病基因耐药检测系统源代码
最新发布
05-01
介绍 本项目旨在改进ResNet50模型,设计一个CTS模型,该模型能够快速、经济且准确地利用CT肺部图像来评估结核病的耐药性。 系统架构 使用Django框架
deep-learning-image-similarity:拍摄2张图像,并根据特征向量的欧几里得距离说出它们的相似度
05-18
给定一批图像,该程序将尝试使用基于Resnet50的特征向量提取来找到图像之间的相似性。 用法 python kreas_resnet50.py会将images文件夹中存在的所有图像python kreas_resnet50.py比较,并为每个图像提供最相似的图像...
第44步 深度学习图像识别:ResNet50建模(Tensorflow)
qq_30452897的博客
06-27 7375
第44步 深度学习图像识别:ResNet50建模(Tensorflow)
ResNet50是什么
m0_73820512的博客
03-12 5559
它的深度和残差学习的方法使得它能够学习更复杂的特征,从而提高了它的准确率。残差学习的思想是,如果一个层的输入和输出相同,那么这个层就是一个恒等映射。这个模型是在2015年的ImageNet比赛中获得了第一名,它的准确率比前一年的获胜者提高了3.6%。ResNet50的名字中的“Res”代表残差,这是因为这个模型使用了残差学习的方法。这个模型的深度使得它能够学习更复杂的特征,从而提高了它的准确率。这个层将每个特征图的所有像素的平均值作为该特征图的输出。这个层的作用是减少模型的参数数量,从而减少过拟合的风险。
经典CNN(一):ResNet-50算法实战与解析
ali1174的专栏
07-13 5859
残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和,然后急剧退化,而且这个退化不是由于过拟合引起的。拓展:深度神经网络的“两朵乌云”梯度弥散/爆炸简单来讲就是网络太深了,会导致模型训练难以收敛。这个问题可以被标准初始化和中间层正规化的方法有效控制。网络退化随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降,这个退化不是由于过拟合而引起的。
Resnet 50 残差网络
JeJe_33的博客
07-16 5924
1.简述 resnet50是何凯明提出,能有效解决深度网络退化问题的一种结构,将输入的多重非线性变化拟合变成了拟合输入与输出的残差,变为恒等映射,5050层 膜拜巨神:https://github.com/KaimingHe 2.基础框架 将block分为两类,block1适用于resnet34及以下,仅有两层结构,需要注意的是,至少应该保证两层,如果只有一层,即 out=F(x,wi)+x=wix+b+xout=F(x,w_i)+x=w_ix+b+xout=F(x,wi​)+x=wi​x+b+x仍为线
Resnet50
afadgas的博客
10-08 1629
resnet50
RESNET50
Azuresmh的博客
04-18 1001
resnet的存在的原因很简单的来讲就是为了解决网络层数加深准确率反而下降(下降的原因是梯度爆炸(梯度爆炸就是初始某些权重的大小不一 太小的权重会由于激活函数压缩变小相当于乘以了很多个很小的数而导致后面的层数中有的很大 有的很小) 在上图的残差网络结构图中,通过“shortcut connections(捷径连接)”的方式,直接把输入x传到输出作为初始结果,输出结果为H(x)=F(x)+x,当F(x)=0时,那么H(x)=x,也就是上面所提到的恒等映射。于是,ResNet相当于将学习目标改变了,不再是学习
resnet-50源码
03-31
以下是ResNet-50源码的简要介绍: 1. 首先,ResNet-50的源码通常使用Python语言编写,使用深度学习框架如PyTorch或TensorFlow实现。 2. ResNet-50的源码包含了网络的定义、前向传播和反向传播等部分。 3. 在网络...

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
写文章

热门文章

  • MATLAB中表示点形状、颜色的常见符号 63184
  • 三维空间内点到直线的距离计算公式 52670
  • resnet-50介绍(一) 26534
  • C++中push_back与pop_back的用法 25657
  • (二)VISIO 中间带箭头的弧线怎么画 20485

分类专栏

  • 点云算法源码及解析 付费 20篇
  • Matlab数字图像处理 付费 4篇
  • MATLAB点云数据处理 付费 9篇
  • 教学相关资料整理 付费
  • MATLAB激光点云数据处理 2篇
  • CGAL 4篇
  • 数学基础 20篇
  • MATLAB与图像处理 5篇
  • LASTools 2篇
  • 深度学习(python+pytorch) 5篇
  • 办公软件 14篇
  • GDAL 4篇
  • 点云学术 8篇
  • Ceres Solver 2篇
  • Ceres 1篇
  • Python_Open3D 1篇
  • 点云
  • 图像处理 7篇
  • Eigen 1篇
  • PCL交互操作 2篇
  • mysql数据库 1篇
  • 图割 条件随机场 2篇
  • 遥感影像 2篇
  • 编程错误小结
  • VTK 7篇
  • 聚类 1篇
  • Point Cloud Library (PCL) 50篇
  • C++ 37篇
  • 机器学习 8篇

最新评论

  • win11+VS2019下配置PCL1.11.1

    点云实验室lab: 容器溢出,可能是数据没读入进来,或超出容器维度

  • win11+VS2019下配置PCL1.11.1

    oneHFR: 您好运行之后出现这样的弹窗报错:Expression: vector insert iterator outside range 该如何解决呢?

  • 二维轮廓自动添加屋顶

    点云实验室lab: 源码下载链接:https://download.csdn.net/download/qq_32867925/89323080

  • 道格拉斯普克算法(DP)的点云轮廓线简化

    普通网友: 写的很好,细节很到位!【我也写了一些相关领域的文章,希望能够得到博主的指导,共同进步!】

  • 道格拉斯普克算法(DP)的点云轮廓线简化

    点云实验室lab: 源代码下载链接:https://download.csdn.net/download/qq_32867925/89303585

您愿意向朋友推荐“博客详情页”吗?

  • 强烈不推荐
  • 不推荐
  • 一般般
  • 推荐
  • 强烈推荐
提交

最新文章

  • C++之构造函数总结
  • c++之this指针在类中用法
  • C++之类的三种继承修饰符(public、private、protected)总结
2024年29篇
2023年21篇
2022年61篇
2021年40篇
2020年43篇
2019年11篇
2018年9篇
2017年1篇

目录

目录

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43元 前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

两个鬼故事论语取名起名大全女孩大晋皇族五峰采花毛尖鼠年男孩起哪些名字女宝贝起什么名字好起名建筑劳务单位名称联通服务密码给院校起名字大友梨奈皮带厂起名吸顶喇叭民主生活会征求意见表随身带着星际争霸个人文集起名王字的男孩起名大全青山菜々梦见打牌www777com生鲜超市起名称孙权劝学译文环保科技有限企业起名医疗器械公司起名字吗折原小孩起名字大全免费2020年女孩北京文艺频道兔侠传奇声名鹊起的鹊阿司匹林小说拜姓俩字男孩起名家具公司起什么名字好少年生前被连续抽血16次?多部门介入两大学生合买彩票中奖一人不认账让美丽中国“从细节出发”淀粉肠小王子日销售额涨超10倍高中生被打伤下体休学 邯郸通报单亲妈妈陷入热恋 14岁儿子报警何赛飞追着代拍打雅江山火三名扑火人员牺牲系谣言张家界的山上“长”满了韩国人?男孩8年未见母亲被告知被遗忘中国拥有亿元资产的家庭达13.3万户19岁小伙救下5人后溺亡 多方发声315晚会后胖东来又人满为患了张立群任西安交通大学校长“重生之我在北大当嫡校长”男子被猫抓伤后确诊“猫抓病”测试车高速逃费 小米:已补缴周杰伦一审败诉网易网友洛杉矶偶遇贾玲今日春分倪萍分享减重40斤方法七年后宇文玥被薅头发捞上岸许家印被限制高消费萧美琴窜访捷克 外交部回应联合利华开始重组专访95后高颜值猪保姆胖东来员工每周单休无小长假男子被流浪猫绊倒 投喂者赔24万小米汽车超级工厂正式揭幕黑马情侣提车了西双版纳热带植物园回应蜉蝣大爆发当地回应沈阳致3死车祸车主疑毒驾恒大被罚41.75亿到底怎么缴妈妈回应孩子在校撞护栏坠楼外国人感慨凌晨的中国很安全杨倩无缘巴黎奥运校方回应护栏损坏小学生课间坠楼房客欠租失踪 房东直发愁专家建议不必谈骨泥色变王树国卸任西安交大校长 师生送别手机成瘾是影响睡眠质量重要因素国产伟哥去年销售近13亿阿根廷将发行1万与2万面值的纸币兔狲“狲大娘”因病死亡遭遇山火的松茸之乡“开封王婆”爆火:促成四五十对奥巴马现身唐宁街 黑色着装引猜测考生莫言也上北大硕士复试名单了德国打算提及普京时仅用姓名天水麻辣烫把捣辣椒大爷累坏了

两个鬼故事 XML地图 TXT地图 虚拟主机 SEO 网站制作 网站优化